我们不妨约定:在平面直角坐标系中,若某函数图象上至少存在不同的两点关于 轴对称,则把该函数称之为“ 函数”,其图象上关于 轴对称的不同两点叫做一对“ 点”.根据该约定,完成下列各题.
(1)若点 与点 是关于 的“ 函数” 的图象上的一对“ 点”,则 , , (将正确答案填在相应的横线上);
(2)关于 的函数 , 是常数)是“ 函数”吗?如果是,指出它有多少对“ 点”如果不是,请说明理由;
(3)若关于 的“ 函数” ,且 , , 是常数)经过坐标原点 ,且与直线 , ,且 , 是常数)交于 , , , 两点,当 , 满足 时,直线 是否总经过某一定点?若经过某一定点,求出该定点的坐标;否则,请说明理由.
中央电视台的“朗读者”节目激发了同学们的读书热情,为了引导学生“多读书,读好书”,某校对八年级部分学生的课外阅读量进行了随机调查,整理调查结果发现,学生课外阅读的本书最少的有5本,最多的有8本,并根据调查结果绘制了不完整的图表,如图所示:
本数(本 |
频数(人数) |
频率 |
5 |
|
0.2 |
6 |
18 |
0.36 |
7 |
14 |
|
8 |
8 |
0.16 |
合计 |
|
1 |
(1)统计表中的 , , ;
(2)请将条形统计图补充完整;
(3)求所有被调查学生课外阅读的平均本数;
(4)若该校八年级共有1200名学生,请你分析该校八年级学生课外阅读7本及以上的人数.
某小区响应济南市提出的“建绿透绿”号召,购买了银杏树和玉兰树共150棵用来美化小区环境,购买银杏树用了12000元,购买玉兰树用了9000元.已知玉兰树的单价是银杏树单价的1.5倍,那么银杏树和玉兰树的单价各是多少?
如图, 是 的直径, ,求 的度数.
如图,在矩形 , , 于点 .求证: .
如图,在平面直角坐标系中,抛物线 交 轴于点 ,交 轴正半轴于点 ,与过 点的直线相交于另一点 ,过点 作 轴,垂足为 .
(1)求抛物线的表达式;
(2)点 在线段 上(不与点 、 重合),过 作 轴,交直线 于 ,交抛物线于点 ,连接 ,求 面积的最大值;
(3)若 是 轴正半轴上的一动点,设 的长为 ,是否存在 ,使以点 、 、 、 为顶点的四边形是平行四边形?若存在,求出 的值;若不存在,请说明理由.