疫苗接种,利国利民.甲、乙两地分别对本地各40万人接种新冠疫苗.甲地在前期完成5万人接种后,甲、乙两地同时以相同速度接种,甲地经过 天后接种人数达到25万人,由于情况变化,接种速度放缓,结果100天完成接种任务,乙地80天完成接种任务,在某段时间内,甲、乙两地的接种人数 (万人)与各自接种时间 (天 之间的关系如图所示.
(1)直接写出乙地每天接种的人数及 的值;
(2)当甲地接种速度放缓后,求 关于 的函数解析式,并写出自变量 的取值范围;
(3)当乙地完成接种任务时,求甲地未接种疫苗的人数.
对于边长为2的正△ABC,建立适当的直角坐标系,写出各个顶点的坐标.
如图,抛物线y=x2+bx-2与x轴交于A、B两点,与y轴交于C点,且A(-1,0).
⑴ 求抛物线的解析式及顶点D的坐标;
⑵ 判断△ABC的形状,证明你的结论;
⑶ 点M(m,0)是x轴上的一个动点,当CM+DM的值最小时,求m的值.
如图,在平面直角坐标系中有一矩形ABCO,B点的坐标为(12,6),点C、A在坐标轴上.⊙A、⊙P的半径均为1,点P从点C开始在线段CO上以1单位/秒的速度向左运动,运动到点O处停止.与此同时,⊙A的半径每秒钟增大2个单位,当点P停止运动时,⊙A的半径也停止变化.设点P运动的时间为t秒.
(1)在0<t<12时,设△OAP的面积为s,试求s与t的函数关系式.并求出当t为何值时,s为矩形ABCO面积的;
(2)在点P的运动过程中,是否存在某一时刻,⊙A与⊙P相切,若存在求出点P的坐标,若不存在,说明理由.