游客
题文

时代中学组织学生进行红色研学活动.学生到达爱国主义教育基地后,先从基地门口 A 处向正南方向走300米到达革命纪念碑 B 处,再从 B 处向正东方向走到党史纪念馆 C 处,然后从 C 处向北偏西 37 ° 方向走200米到达人民英雄雕塑 D 处,最后从 D 处回到 A 处.已知人民英雄雕塑在基地门口的南偏东 65 ° 方向,求革命纪念碑与党史纪念馆之间的距离(精确到1米).(参考数据: sin 37 ° 0 . 60 cos 37 ° 0 . 80 tan 37 ° 0 . 75 sin 65 ° 0 . 91 cos 65 ° 0 . 42 tan 65 ° 2 . 14 )

科目 数学   题型 解答题   难度 中等
知识点: 解直角三角形的应用-方向角问题
登录免费查看答案和解析
相关试题

如图,一次函数y=kx+b与反比例函数的图象交于A(m,6),B(n,3)两点.
(1)求一次函数的解析式;
(2)根据图象直接写出时x的取值范围.

(1)解不等式:5(x﹣2)+8<6(x﹣1)+7;
(2)若(1)中的不等式的最小整数解是方程2x﹣ax=3的解,求a的值.

(1)计算:
(2)先化简,再求值:,其中

阅读材料:
(1)对于任意两个数的大小比较,有下面的方法:
时,一定有
时,一定有
时,一定有
反过来也成立.因此,我们把这种比较两个数大小的方法叫做“求差法”.
(2)对于比较两个正数的大小时,我们还可以用它们的平方进行比较:

∴()与()的符号相同
>0时,>0,得
=0时,=0,得
<0时,<0,得
解决下列实际问题:
(1)课堂上,老师让同学们制作几种几何体,张丽同学用了3张A4纸,7张B5纸;李明同学用了2张A4纸,8张B5纸.设每张A4纸的面积为x,每张B5纸的面积为y,且x>y,张丽同学的用纸总面积为W1,李明同学的用纸总面积为W2.回答下列问题:
①W1=(用x、y的式子表示)
W2=(用x、y的式子表示)
②请你分析谁用的纸面积最大.
(2)如图1所示,要在燃气管道l上修建一个泵站,分别向A.B两镇供气,已知A.B到l的距离分别是3km、4km(即AC=3km,BE=4km),AB=xkm,现设计两种方案:

方案一:如图2所示,AP⊥l于点P,泵站修建在点P处,该方案中管道长度a1=AB+AP.
方案二:如图3所示,点A′与点A关于l对称,A′B与l相交于点P,泵站修建在点P处,该方案中管道长度a2=AP+BP.
①在方案一中,a1=km(用含x的式子表示);
②在方案二中,a2=km(用含x的式子表示);
③请你分析要使铺设的输气管道较短,应选择方案一还是方案二.

如图,抛物线与x轴交于A.B两点(点A在点B的左侧),与y轴交于点C,点C与点F关于抛物线的对称轴对称,直线AF交y轴于点E,|OC|:|OA|=5:1.
(1)求抛物线的解析式;
(2)求直线AF的解析式;
(3)在直线AF上是否存在点P,使△CFP是直角三角形?若存在,求出P点坐标;若不存在,说明理由.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号