游客
题文

如图,抛物线 y = a x 2 + bx + c 经过点 A ( 2 , 0 ) B ( 4 , 0 ) ,与 y 轴正半轴交于点 C ,且 OC = 2 OA ,抛物线的顶点为 D ,对称轴交 x 轴于点 E .直线 y = mx + n 经过 B C 两点.

(1)求抛物线及直线 BC 的函数表达式;

(2)点 F 是抛物线对称轴上一点,当 FA + FC 的值最小时,求出点 F 的坐标及 FA + FC 的最小值;

(3)连接 AC ,若点 P 是抛物线上对称轴右侧一点,点 Q 是直线 BC 上一点,试探究是否存在以点 E 为直角顶点的 Rt Δ PEQ ,且满足 tan EQP = tan OCA .若存在,求出点 P 的坐标;若不存在,请说明理由.

科目 数学   题型 解答题   难度 困难
知识点: 二次函数的性质 待定系数法求二次函数解析式 二次函数综合题
登录免费查看答案和解析
相关试题

(1)计算:
(2)先化简,再求值:,其中

如图,在平面直角坐标系中,O是坐标原点,点A的坐标是(-2,4),过点A作AB⊥y轴,垂足为B,连结OA。

(1)求△OAB的面积;
(2)若抛物线经过点A。
①求c的值;
②将抛物线向下平移m个单位,使平移后得到的抛物线顶点落在△OAB的内部(不包括△OAB的边界),求m的取值范围(直接写出答案即可)。

某公司经销一种绿茶,每千克成本为50元.市场调查发现,在一段时间内,销售量(千克)随销售单价(元/千克)的变化而变化,具体关系式为:,且物价部门规定这种绿茶的销售单价不得高于90元/千克.设这种绿茶在这段时间内的销售利润为(元),解答下列问题:
(1)求的关系式;
(2)当取何值时,的值最大?
(3)如果公司想要在这段时间内获得2250元的销售利润,销售单价应定为多少元?

如图,在直角坐标平面中,O为坐标原点,二次函数的图象与轴的负半轴相交于点C,点C的坐标为(0,-3),且BO=CO。

(1)求出B点坐标和这个二次函数的解析式
(2)求出的增大而减小的自变量的取值范围

用长度为32m的金属材料制成如图所示的金属框,下部为一个矩形,上部为一个等边三角形。当下部的矩形面积最大时,求矩形的AB、BC的边长各为多少m?并求此时整个金属框的面积是多少?

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号