游客
题文

在直角坐标系 xOy 中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为 ρ = 2 2 cos θ

(1)将C的极坐标方程化为直角坐标方程;

(2)设点A的直角坐标为 1 , 0 MC上的动点,点P满足 AP = 2 AM ,写出Р的轨迹 C 1 的参数方程,并判断C C 1 是否有公共点.

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

记函数的定义域为集合,函数的定义域为集合,集合
(Ⅰ)求集合,
(Ⅱ)若,求实数的取值范围.

计算:
(Ⅰ)
(Ⅱ)

设直线l1yk1x+1,l2yk2x-1,其中实数k1k2满足k1k2+1=0.
(Ⅰ)证明:直线l1l2相交;(Ⅱ)试用解析几何的方法证明:直线l1l2的交点到原点距离为定值.(Ⅲ)设原点到l1l2的距离分别为d1和d2求d1+d2的最大值

如图:AD=2,AB=4的长方形所在平面与正所在平面互相垂直,分别为的中点.

(1)求四棱锥-的体积;
(2)求证:平面
(3)试问:在线段上是否存在一点,使得平面平面?若存在,试指出点的位置,并证明你的结论;若不存在,请说明理由.

已知直线
(1)求证:不论实数取何值,直线总经过一定点.
(2)为使直线不经过第二象限,求实数的取值范围.
(3)若直线与两坐标轴的正半轴围成的三角形面积最小,求的方程.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号