在直角坐标系 中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为 .
(1)将C的极坐标方程化为直角坐标方程;
(2)设点A的直角坐标为 ,M为C上的动点,点P满足 ,写出Р的轨迹 的参数方程,并判断C与 是否有公共点.
记函数
的定义域为集合
,函数
的定义域为集合
,集合
.
(Ⅰ)求集合
,
;
(Ⅱ)若
,求实数
的取值范围.
计算:
(Ⅰ)
(Ⅱ)
设直线l1:y=k1x+1,l2:y=k2x-1,其中实数k1,k2满足k1k2+1=0.
(Ⅰ)证明:直线l1与l2相交;(Ⅱ)试用解析几何的方法证明:直线l1与l2的交点到原点距离为定值.(Ⅲ)设原点到l1与l2的距离分别为d1和d2求d1+d2的最大值
如图:AD=2,AB=4的长方形
所在平面与正
所在平面互相垂直,
分别为
的中点.
(1)求四棱锥
-
的体积;
(2)求证:
平面
;
(3)试问:在线段
上是否存在一点
,使得平面
平面
?若存在,试指出点
的位置,并证明你的结论;若不存在,请说明理由.
已知直线
:
(1)求证:不论实数
取何值,直线
总经过一定点.
(2)为使直线不经过第二象限,求实数
的取值范围.
(3)若直线
与两坐标轴的正半轴围成的三角形面积最小,求
的方程.