游客
题文

已知函数 f ( x ) = ( x - 1 ) e x - a x 2 + b

(1)讨论 f ( x ) 的单调性;

(2)从下面两个条件中选一个,证明: f ( x ) 有一个零点

1 2 < a e 2 2 , b > 2 a

0 < a < 1 2 , b 2 a

科目 数学   题型 解答题   难度 较难
登录免费查看答案和解析
相关试题

如图,直线AB为圆的切线,切点为B,点C在圆上,∠ABC的角平分线BE交圆于点EDB垂直BE交圆于点D.

(1)证明:DBDC
(2)设圆的半径为1,BC,延长CEAB于点F,求△BCF外接圆的半径.

如图,AB为⊙O的直径,直线CD与⊙O相切于EAD垂直CDDBC垂直CDCEF垂直ABF,连接AEBE.

证明:
(1)∠FEB=∠CEB
(2)EF2AD·BC.

如图,已知圆上的弧,过C点的圆的切线与BA的延长线交于E点,

证明:
(1)∠ACE=∠BCD
(2)BC2BE·CD.

经销商经销某种农产品,在一个销售季度内,每售出1 t该产品获利润500元,未售出的产品,每1 t亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图所示.经销商为下一个销售季度购进了130 t该农产品.以X(单位: t,100≤X≤150)表示下一个销售季度内的市场需求量,T(单位:元)表示下一个销售季度内经销该农产品的利润.

(1)将T表示为X的函数;
(2)根据直方图估计利润T不少于57 000元的概率;
(3)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值,需求量落入该区间的频率作为需求量取该区间中点值的概率(例如:若x∈[100,110),则取X=105,且X=105的概率等于需求量落入[100,110)的频率,求T的数学期望.

某工科院校对AB两个专业的男女生人数进行调查,得到如下的列联表:


专业A
专业B
总计
女生
12
4
16
男生
38
46
84
总计
50
50
100

(1)从B专业的女生中随机抽取2名女生参加某项活动,其中女生甲被选到的概率是多少?
(2)能否在犯错误的概率不超过0.05的前提下,认为工科院校中“性别”与“专业”有关系呢?
注:K2

P(K2k0)
0.25
0.15
0.10
0.05
0.025
k0
1.323
2.072
2.706
3.841
5.024

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号