(本小题满分6分)如图,在菱形中,
,
相交于点
,
为
的中点,
.
(1)求的度数;
(2)如果,求
的长.
(本小题满分6分)如图,有两棵树,一棵高10米,另一棵高4米,两树相距8米,一只小鸟从一棵树的树梢飞到另一棵树的树梢,求小鸟至少飞行的距离.
(本小题满分6分)某校八(1)班同学为了解2011年某小区家庭月均用水情况,随机调查了该小区部分家庭,并将调查数据进行如下整理,
月均用水量![]() |
频数(户) |
频率 |
![]() |
6 |
0.12 |
![]() |
0.24 |
|
![]() |
16 |
0.32 |
![]() |
10 |
0.20 |
![]() |
4 |
|
![]() |
2 |
0.04 |
请解答以下问题:
(1)把上面的频数分布表和频数分布直方图补充完整;
(2)若该小区用水量不超过15t的家庭占被调查家庭总数的百分比;
(3)若该小区有1000户家庭,根据调查数据估计,该小区月均用水量超过20 t的家庭大约有多少户?
(本小题满分6分)已知:如图,,
是□ABCD的对角线
上的两点,
,求证:
.
(1)AB∥CD,如图1,点P在AB、CD外面时,由AB∥CD,有∠B=∠BOD,又因为∠BOD是△POD的外角,故∠BOD=∠BPD+∠D,得∠BPD=∠B-∠D.如图2,将点P移到AB、CD内部,以上结论是否成立?若不成立,则∠BPD、∠B、∠D之间有何数量关系?请证明你的结论.
(2)如图3,若AB、CD相交于点Q,则∠BPD、∠B、∠D、∠BQD之间有何数量关系(不需证明)?
(3)根据(2)的结论求图4中∠A+∠B+∠C+∠D+∠E+∠F的度数.
(4)若平面内有点A1、A2、A3、A4、A5、A6、A7、A8,连结A1A3、A2A4、A3A5、A4A6、A5A7、A6A8、A7 A1、A8 A2,如图5,则∠A1+∠A2+∠A3+∠A4+∠A5+∠A6+∠A7+∠A8的度数是多少(直接写出结果)?
若平面内有n个点A1、A2、A3、A4、A5、······,An,且这n个点能围成的多边形为凸多边形,连结A1A3、A2A4、A3A5、A4A6、A5A7,······,An-1A1、AnA2,则∠A1+∠A2+∠A3+∠A4+······+∠An-1+∠An的度数是多少(直接写出结果,用含n的代数式表示)?