如图1, D 为 ⊙ O 上一点,点 C 在直径 BA 的延长线上,且 ∠ CDA = ∠ CBD .
(1)判断直线 CD 与 ⊙ O 的位置关系,并说明理由;
(2)若 tan ∠ ADC = 1 2 , AC = 2 ,求 ⊙ O 的半径;
(3)如图2,在(2)的条件下, ∠ ADB 的平分线 DE 交 ⊙ O 于点 E ,交 AB 于点 F ,连结 BE .求 sin ∠ DBE 的值.
如图,在 △ ABC 中, BAC = 90 ∘ , AD ⊥ BC 于点 D ,点 E 为直角边 AC 的中点,过点 D , E 作直线交 AB 的延长线于点 F .求证: AB AC = DF AF .
如图,等边 △ ABC 中, D , E 分别在 BC , AC 上,且 BD = CE , AD , BE 交于点 F , EG / / CF 交于点 G ,求证: BF = DG .
如图,在凸四边形 ABCD 中,已知 ∠ ABC + ∠ CDA = 300 ∘ , AB ⋅ CD = BC ⋅ AD .求证: AB ⋅ CD = AC ⋅ BD .
如图所示,点 E 是正方形 ABCD 的边 BC 延长线上一点,连接 DE ,过顶点 B 作 BF ⊥ DE ,垂足为 F , BF 交边 DC 于点 G .
(1)求证: GD ⋅ AB = DF ⋅ BG ;
(2)连接 CF ,求证: ∠ CFB = 45 ∘ .
如图抛物线 y = a x 2 + bx ( a > 0 ) 与双曲线 y = k x 有公共点 A , B ,已知点 A 的坐标为 1 , 4 ,点 B 在第三象限内,且 △ AOB 的面积为 3 ( O 为坐标原点).
(1)求实数 a , b , k 的值;
(2)过抛物线上点 A 作直线 AC / / x 轴,交拋物线于另一点 C ,求所有满足 △ EOC ∼ △ AOB 的点 E 的坐标.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号