某校将学生体质健康测试成绩分为 , , , 四个等级,依次记为4分,3分,2分,1分.为了解学生整体体质健康状况,拟抽样进行统计分析.
(1)以下是两位同学关于抽样方案的对话:
小红:"我想随机抽取七年级男、女生各60人的成绩."
小明:"我想随机抽取七、八、九年级男生各40人的成绩."
根据如图学校信息,请你简要评价小红、小明的抽样方案.
如果你来抽取120名学生的测试成绩,请给出抽样方案.
(2)现将随机抽取的测试成绩整理并绘制成如图统计图,请求出这组数据的平均数、中位数和众数.
某校为了了解八年级学生体育测试成绩情况,以八(1)班学生的体育测试成绩为样本,按A、B、C、D四个等级进行统计,并将统计结果绘制成如下两幅统计图,请你结合图中所给信息解答下列问题:
(说明:A级:90~100分:B级:75-89分;c级:60~74分;D级:60分以下.)
(1)求出D级学生的人数占全班总人数的百分比;
(2)求出扇形统计图中C级所在的扇形圆心角度数;
(3)该班学生体育测试成绩的中位数落在哪个等级内.
已知:如图,在中,AB=AC,点D、E在BC上,且BD=CE.
求证:(1)△ABD≌△ACE;
(2)∠ADE =∠AED.
计算:.
已知:如图(1),在平行四边形ABCD中,对角线CA⊥BA,AB=AC=8cm,四边形A1B1C1D1是平行四边形ABCD绕点A按逆时针方向旋转45°得到的,A1D1经过点C,B1C1分别与AB、BC相交于点P、Q.
(1)求四边形CD1C1Q的周长;(保留无理数,下同)
(2)求两个平行四边形重合部分的四边形APQC的面积S;
(3)如图(2),将平行四边形A1B1C1D1以每秒1cm的速度向右匀速运动,当运动到B1C1在直线AC上时停止运动.设运动的时间为x(秒),两个平行四边形重合部分的面积为y(cm2).求y关于x的函数关系式,并探索是否存在一个时刻x,使得y取最大值,若存在,请你求出这个最大值;若不存在,请你说明理由.
受国际炒家炒作的影响,今年棉花价格出现了大幅度波动.1至3月份,棉价大幅度上涨,其价格y1 (元/吨)与月份x 之间的函数关系式为:y1=2200x+24200(1≤≤3,且
取整数).而从4月份起,棉价大幅度走低,其价格y2(元/吨)与月份
(4≤x≤6,且x取整数)之间的函数关系如图所示.
(1)直接写出棉价y2 (元/吨)与月份之间所满足的一次函数关系式;
(2)某棉被厂今年1至3月份的棉花进货量p1 (吨)与月份x之间所满足的函数关系式为:p1=-10x+170 (1≤x≤3,且取整数);4至6月份棉花进货量p2(吨)与月份
之间所满足的函数关系式为p2=40x-20 (4≤
≤6,且
取整数).求在前6个月中该棉被厂的棉花进货金额最大的月份和该月的进货金额;
(3)经厂方研究决定,若7月份棉价继续下降,则对棉花进行收储.若棉价在6月份的基础上下降a%,则该厂7月份进货量在6月份的基础上增加2%.若要使7月份进货金额为5130400元,请你估算出
的最大整数值.
(参考数据:352=1225,362=1296,372=1369,382=1444)