在三棱柱 ABC- A 1 B 1 C 1中, AB⊥ AC, B 1 C⊥平面 ABC, E, F分别是 AC, B 1 C的中点.
(1)求证: EF∥平面 AB 1 C 1;
(2)求证:平面 AB 1 C⊥平面 ABB 1.
如图,已知四棱锥,底面
为菱形,
平面
,
,
分别是
的中点.
(Ⅰ)证明:;
(Ⅱ)若,求二面角
的余弦值.
甲、乙两人共同抛掷一枚硬币,规定硬币正面朝上甲得1分,否则乙得1分,先积得3分者获胜,并结束游戏.
(Ⅰ)求在前3次抛掷中甲得2分,乙得1分的概率;
(Ⅱ)若甲已经积得2分,乙已经积得1分,求甲最终获胜的概率;
(Ⅲ)用表示决出胜负抛硬币的次数,求
的分布列及数学期望.
在数列中,
.
(Ⅰ)证明数列成等比数列,并求
的通项公式;
(Ⅱ)令,求数列
的前
项和
.
已知函数有如下性质:如果常数
,那么该函数在
上是减函数,在
上是增函数.
(1)已知,利用上述性质,求函数
的单调区间和值域;
(2)对于(1)中的函数和函数
,若对任意
∈[0,1],总存在
∈[0,1],使得
=
成立,求实数
的值.
已知是奇函数(其中
).
(1)求的值;
(2)判断在
上的单调性并证明;
(3)当时,
的取值范围恰为
,求
与
的值.