在平面直角坐标系 xOy中,已知椭圆 的左、右焦点分别为 F 1, F 2,点 A在椭圆 E上且在第一象限内, AF 2⊥ F 1 F 2,直线 AF 1与椭圆 E相交于另一点 B.
(1)求△ AF 1 F 2的周长;
(2)在 x轴上任取一点 P,直线 AP与椭圆 E的右准线相交于点 Q,求 的最小值;
(3)设点 M在椭圆 E上,记△ OAB与△ MAB的面积分别为 S 1, S 2,若 S 2=3 S 1,求点 M的坐标.
已知.
(1)化简;
(2)若是第三象限角,且
,求
的值.
已知直线的极坐标方程为,圆M的参数方程为
。求:(1)将直线的极坐标方程化为直角坐标方程;
(2)求圆M上的点到直线的距离的最小值.
(本小题满分10分)某班主任对班级22名学生进行了作业量多少的调查,数据如下表:在喜欢玩电脑游戏的12中,有10人认为作业多,2人认为作业不多;在不喜欢玩电脑游戏的10人中,有3人认为作业多,7人认为作业不多.求:
(1)根据以上数据建立一个列联表;
(2)试问喜欢电脑游戏与认为作业多少是否有关系?
在平面直角坐标系中,以
为极点,
轴非负半轴为极轴建立坐标系,已知曲线
的极坐标方程为
,直线
的参数方程为:
(
为参数),两曲线相交于
两点. 求:
(1)写出曲线的直角坐标方程和直线
的普通方程;
(2)若求
的值.
已知直线的参数方程为
为参数),以坐标原点为极点,
轴的正半轴为极轴建立极坐标系,圆
的极坐标方程为
.求:
(1)求圆的直角坐标方程;
(2)若是直线
与圆面
≤
的公共点,求
的取值范围.