如图,四面体 ABCD中, △ A B C 是正三角形, △ A C D 是直角三角形, ∠ A B D = ∠ C B D , A B = B D .
(1)证明: 平面 A C D ⊥ 平面 A B C ;
(2)过 AC的平面交 BD于点 E,若平面 AEC把四面体 ABCD分成体积相等的两部分,求二面角 D - A E - C 的余弦值.
设函数, (1)当时,求函数的单调递减区间; (2)若函数有相同的极大值,且函数在区间上的 最大值为,求实数的值.(其中e是自然对数的底数).
已知正数满足, (1) 求证:; (2) 求的最小值.
已知直线经过点,倾斜角, (1)写出直线的参数方程; (2)设与圆相交于A、B两点,求点P到A、B两点的距离之积.
把边长为6的等边三角形铁皮剪去三个相同的四边形(如图阴影部分)后,用剩余部分做成一个无盖的正三棱柱形容器(不计接缝),设容器的高为,容积为。 (1)写出函数的解析式,并求出函数的定义域; (2)求当为多少时,容器的容积最大?并求出最大容积.
已知实数满足,求证中至少有一个是负数.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号