游客
题文

甲、乙、丙三人参加了一家公司的招聘面试,面试合格者可正式签约.甲表示只要面试合格就签约.乙、丙则约定:两人面试都合格就一同签约,否则两人都不签约.设每人面试合格的概率都是 1 2 , 且面试是否合格互不影响.

求: ( I ) 至少有 1 人面试合格的概率;

( II ) 签约人数 ξ 的分布列和数学期望.

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

如图,已知平行四边形和矩形所在的平面互相垂直,是线段的中点.
(Ⅰ)求二面角的正弦值;
(Ⅱ)设点为一动点,若点出发,沿棱按照的路线运动到点,求这一过程中形成的三棱锥的体积的最小值.

在直角坐标平面上有一点列对一切正整数n,点在函数的图象上,且的横坐标构成以为首项,-1为公差的等差数列.
(Ⅰ)求点的坐标;
(Ⅱ)设抛物线列C1,C2,C3,…,Cn,…中的每一条的对称轴都垂直于x轴,抛物线Cn的顶点为Pn,且过点Dn(0,).记与抛物线Cn相切于点Dn的直线的斜率为kn,求

已知函数
(Ⅰ)求函数的最小正周期和值域;
(Ⅱ)若为第二象限角,且,求的值.

已知函数f(x)=,其中a>0.
(Ⅰ)若a=1,求曲线y=f(x)在点(2,f(2))处的切线方程;
(Ⅱ)若在区间上,f(x)>0恒成立,求a的取值范围.

已知椭圆C:=1(a>b>0)的离心率为,且在x轴上的顶点分别为
(1)求椭圆方程;
(2)若直线轴交于点T,P为上异于T的任一点,直线分别与椭圆交于M、N两点,试问直线MN是否通过椭圆的焦点?并证明你的结论.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号