游客
题文

双曲线 C 1 : x 2 4 2 - y 2 b 2 = 1 ,圆 C 2 : x 2 + y 2 = 4 + b 2 ( b > 0 ) 在第一象限交点为A, A ( x A , y A ) ,曲线 Γ x 2 4 - y 2 b 2 = 1 , x > x A x 2 + y 2 = 4 + b 2 , x > x A

(1)若 x A = 6 ,求b;

(2)若 b = 5 C 2 与x轴交点记为 F 1 F 2 ,P是曲线 Γ 上一点,且在第一象限,并满足 P F 1 = 8 ,求∠ F 1 P F 2

(3)过点 S ( 0 , 2 + b 2 2 ) 且斜率为 - b 2 的直线 l 交曲线 Γ 于M、N两点,用b的代数式表示 OM ON ,并求出 OM ON 的取值范围。

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

(本小题满分12分)已知数列为等差数列,且为等比数列,数列的前三项依次为3,7,13。求
(1)数列的通项公式;
(2)数列的前项和

(本小题满分10分)已知

(本小题满分10分)选修4-5:不等式选讲
设不等式的解集为A,且
(Ⅰ)求a的值;
(Ⅱ)求函数的最小值。

(本小题满分10分)选修4-4:坐标系与参数方程
已知曲线C的极坐标方程是.以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直线l的参数方程是:是参数).
(Ⅰ)若直线l与曲线C相交于A、B两点,且,试求实数m值.
(Ⅱ)设为曲线上任意一点,求的取值范围.

(本小题满分12分)椭圆C:的长轴是短轴的两倍,点在椭圆上.不过原点的直线l与椭圆相交于A、B两点,设直线OA、l、OB的斜率分别为,且恰好构成等比数列,记△的面积为S.
(Ⅰ)求椭圆C的方程.
(Ⅱ)试判断是否为定值?若是,求出这个值;若不是,请说明理由?
(Ⅲ)求S的范围.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号