游客
题文

如图,某市拟在长为的道路OP的一侧修建一条运动赛道,赛道的前一部分为曲线段 OSM ,该曲线段为函数 y = A sin ω x A > 0 , ω > 0 x 0 , 4 的图象,且图象的最高点为 S 3 , 2 3 ;赛道的后一部分为折线段 MNP ,为保证参赛运动员的安全,限定 MNP = 120 °

(Ⅰ)求A , ω 的值和M,P两点间的距离;

(Ⅱ)应如何设计,才能使折线段赛道 MNP 最长?                                          

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

如图所示的长方体ABCD-A1B1C1D1中,底面ABCD是边长为2的正方形,OACBD的交点,BB1M是线段B1D1的中点.

(1)求证:BM∥平面D1AC
(2)求证:D1O⊥平面AB1C
(3)求二面角B-AB1-C的大小.

如图,在直四棱柱ABCD-A1B1C1D1中,底面ABCD为等腰梯形,ABCDAB=4,BCCD=2,AA1=2,EE1F分别是棱ADAA1AB的中点.

(1)证明:直线EE1∥平面FCC1
(2)求二面角B-FC1-C的余弦值.

如图,四棱锥P-ABCD中,PA⊥底面ABCDABAD,点E在线段AD上,且CEAB.

(1)求证:CE⊥平面PAD
(2)若PAAB=1,AD=3,CD,∠CDA=45°,求四棱锥P-ABCD的体积.

已知Sn是数列{an}的前n项和,且anSn-1+2(n≥2),a1=2.
(1)求数列{an}的通项公式.
(2)设bnTnbn+1bn+2+…+b2n,是否存在最大的正整数k,使得
对于任意的正整数n,有Tn恒成立?若存在,求出k的值;若不存在,说明理由.

已知等差数列{an}的前n项和为Snn∈N*,且a2=3,点(10,S10)在直线y=10x上.
(1)求数列{an}的通项公式;
(2)设bn=2an+2n,求数列{bn}的前n项和Tn.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号