设数列满足 | a n ﹣ a n + 1 2 | ≤ 1 , n ∈ N * .
(1)求证: | a n | ≥ 2 n ﹣ 1 ( | a 1 | ﹣ 2 )( n ∈ N * )
(2)若 | a n | ≤ ( 3 2 ) n , n ∈ N * , 证明: | a n | ≤ 2 , n ∈ N * .
设表示不超过的最大整数(如,),对于给定的N*,定义,求当时,函数的值域
已知函数 f ( x ) = x 3 + a x 2 + x + 1 , a ∈ R . (Ⅰ)讨论函数 f ( x ) 的单调区间; (Ⅱ)设函数 f ( x ) 在区间 ( - 2 3 , 1 3 ) 内是减函数,求 a 的取值范围.
已知函数,求的值
已知定义域为的函数是奇函数。 (Ⅰ)求的值; (Ⅱ)若对任意的,不等式恒成立,求的取值范围;
已知函数。 (Ⅰ)若为奇函数,求的值; (Ⅱ)若在上恒大于0,求的取值范围。
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号