已知函数 .
(1)求 的单调递增区间;
(2)设△ABC为锐角三角形,角A所对边 ,角B所对边b=5,若 ,求△ABC的面积.
已知的三内角A,B,C所对三边分别为a,b,c,且
(I)求的值。
(II)若的面积
求a的值。
假设国家收购某种农产品的价格是1.2元/kg,其中征税标准为每100元征8元(即税率为8个百分点,8%),计划可收购kg.为了减轻农民负担,决定税率降低
个百分点,预计收购可增加
个百分点.
(1)写出税收(元)与
的函数关系;
(2)要使此项税收在税率调节后不低于原计划的78%,确定的取值范围.
在中,已知
,
.
(Ⅰ)求
的值;
(Ⅱ)若为
的中点,求
的长.
求数列的前100项的和。
(本小题满分14分)
已知函数(
为自然对数的底数),
,
,
.
(1)判断函数的奇偶性,并说明理由;
(2)求函数的单调递增区间;
(3)证明:对任意实数和
,且
,都有不等式
成立.