定义首项为1且公比为正数的等比数列为"M-数列".
(1)已知等比数列{ a n} 满足: ,求证:数列{ a n}为"M-数列";
(2)已知数列{ b n}满足: ,其中 S n为数列{ b n}的前 n项和.
①求数列{ b n}的通项公式;
②设 m为正整数,若存在"M-数列"{ c n} ,对任意正整数 k ,当 k≤ m时,都有 成立,求 m的最大值.
设数列是等比数列,
,已知
, (1)求数列
的首项和公比;(2)求数列
的通项公式。
某批发市场对某种商品的周销售量(单位:吨)进行统计,最近100周的统计结果如下表所示:
周销售量(单位:吨) |
2 |
3 |
4 |
频数 |
20 |
50 |
30 |
⑴ 根据上面统计结果,求周销售量分别为2吨,3吨和4吨的频率;
⑵ 已知每吨该商品的销售利润为2千元,表示该种商品两周销售利润的和(单位:千元),若以上述频率作为概率,且各周的销售量相互独立,求
的分布列和数学期望.
已知集合,若
,求实数
的取值范围.
利用幂函数图象,画出下列函数的图象(写清步骤).
(1).
由于对某种商品开始收税,使其定价比原定价上涨x成(即上涨率为),涨价后,商品卖出个数减少bx成,税率是新定价的a成,这里a,b均为正常数,且a<10,设售货款扣除税款后,剩余y元,要使y最大,求x的值.