游客
题文

定义首项为1且公比为正数的等比数列为"M-数列".   

(1)已知等比数列{ a n} ( n N * ) 满足: a 2 a 4 = a 5 , a 3 - 4 a 2 + 4 a 4 = 0 ,求证:数列{ a n}为"M-数列";    

(2)已知数列{ b n}满足: b 1 = 1 , 1 S n = 2 b n - 2 b n + 1 ,其中 S n为数列{ b n}的前 n项和.

①求数列{ b n}的通项公式;

②设 m为正整数,若存在"M-数列"{ c n} ( n N * ) ,对任意正整数 k ,当 km时,都有 c k b k c k + 1 成立,求 m的最大值.

科目 数学   题型 解答题   难度 中等
知识点: 等比数列 导数在研究函数中的应用 数列综合
登录免费查看答案和解析
相关试题

在直角坐标系中,直线的参数方程为为参数),在极
坐标系(与直角坐标系取相同的长度单位,且以原点O为极点,以轴正半轴为极轴)中,圆C的方程为
①求圆C的直角坐标方程;
②设圆C与直线交于点A、B,若点P的坐标为,求|PA|+|PB|。

设函数,其中,
(1)若,求曲线点处的切线方程;
(2)是否存在负数,使对一切正数都成立?若存在,求出的取值范围;若不存在,请说明理由。

已知分别是椭圆的左、右 焦点,已知点
满足,且。设是上半椭圆上且满足的两点。
(1)求此椭圆的方程;
(2)若,求直线AB的斜率。

已知一家公司生产某种品牌服装的年固定成本为10万元,每生产1千件需另投入2.7万元。设该公司一年内生产该品牌服装x千件并全部销售完,每千件的销售收入为R万元,且R
(1)写出年利润关于年产量的函数解析式;
(2)年产量为多少千件时,该公司在这一品牌服装的生产中所获得的年利润最大。
(注:年利润=年销售收入-年总成本)

如图: PA⊥平面ABCD,ABCD是矩形,PA=AB=1,
AD=,点F是PB的中点,点E在边BC上移动.
(Ⅰ)求三棱锥E-PAD的体积;
(Ⅱ)当点E为BC的中点时,试判断EF与平面
PAC的位置关系,并说明理由;
(Ⅲ)证明:无论点E在边BC的何处,都有PE⊥AF.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号