游客
题文

已知抛物线方程 y 2 = 4 x F 为焦点, P 为抛物线准线上一点, Q 为线段 PF 与抛物线的交点,定义: d ( P ) = | PF | | FQ |

(1)当 P ( - 1 , - 8 3 ) 时,求 d ( P )

(2)证明:存在常数 a ,使得 2 d ( P ) = | PF | + a

(3) P 1 P 2 P 3 为抛物线准线上三点,且 | P 1 P 2 | = | P 2 P 3 | ,判断 d ( P 1 ) + d ( P 3 ) 2 d ( P 2 ) 的关系.

科目 数学   题型 解答题   难度 中等
知识点: 抛物线 圆锥曲线综合
登录免费查看答案和解析
相关试题

已知
(1)证明:
(2)若存在实数k和t,满足,试求出k关于t的关系式k=f(t).
(3)根据(2)的结论,试求出k=f(t)在(-2,2)上的最小值.

二次函数f(x)满足f(x+1)-f(x)=2x,且f(0)=1.
(1)求f(x)的解析式;
(2)在区间[-1,1]上,y=f(x)的图象恒在y=2x+m的图象上方,求实数m的取值范围

如图,已知三棱锥P-ABC中,∠ACB=90°,CB=4,AB=20,D为AB中点,M为PB中点,且△PDB是正三角形,PA⊥PC。
.
(1)求证:DM∥平面PAC;
(2)求证:平面PAC⊥平面ABC;
(3)求三棱锥M-BCD的体积

如图,在棱长为2的正方体ABCD-A1B1C1D1中,E为棱CC1的中点。

(1)求证:BD⊥AE;
(2)求点A到平面BDE的距离.

如图,在四棱锥P-ABCD中,四边形ABCD是矩形,侧面PAD⊥底面ABCD,若点E,F分别是PC,BD的中点。

(1)求证:EF∥平面PAD;
(2)求证:平面PAD⊥平面PCD

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号