二次函数 ,先向上平移 个单位,再向右平移 个单位,用光滑的曲线画在平面直角坐标系上.
|
|
|
|
|
|
|
|
|
|
|
|
(1) 的值为______;
(2)在坐标系中画出平移后的图象并写出 与 的交点坐标;
(3)点 在新的函数图象上,且 两点均在对称轴同一侧,若 ,则 ______ .(填不等号)
如图,AC为⊙O的直径,AC=4,B、D分别在AC两侧的圆上,∠BAD=60°,BD与AC的交点为E.
(1) 求点O到BD的距离及∠OBD的度数;
(2) 若DE=2BE,求的值和CD的长.
如图,梯形ABCD中,AD∥BC,,BC=2,
,
.
(1) 求∠BDC的度数;
(2) 求AB的长.
为了让更多的失学儿童重返校园,某社区组织“献爱心手拉手”捐款活动. 对社区部分捐款户数进行调查和分组统计后,将数据整理成如图所示的统计图(图中信息不完整). 已知A、B两组捐款户数的比为1 : 5.
|
列方程(组)解应用题:
为了提高产品的附加值,某公司计划将研发生产的1200件新产品进行精加工后再投放市场. 现有甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两个工厂了解情况,获得如下信息:
信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天;
信息二:乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍.
根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品.
平面直角坐标系xOy中,反比例函数的图象经过点,过点A作AB⊥x轴于点B,△AOB的面积为1.
(1) 求m和k的值;
(2) 若过点A的直线与y轴交于点C,且∠ACO=45°,直接写出点C的坐标.