综合与实践
【问题情境】数学活动课上,老师带领同学们开展“利用树叶的特征对树木进行分类”的实践活动.
【实践发现】同学们随机收集芒果树、荔枝树的树叶各10片,通过测量得到这些树叶的长y(单位:cm),宽x(单位:cm)的数据后,分别计算长宽比,整理数据如下:
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
|
芒果树叶的长宽比 |
3.8 |
3.7 |
3.5 |
3.4 |
3.8 |
4.0 |
3.6 |
4.0 |
3.6 |
4.0 |
荔枝树叶的长宽比 |
2.0 |
2.0 |
2.0 |
2.4 |
1.8 |
1.9 |
1.8 |
2.0 |
1.3 |
1.9 |
【实践探究】分析数据如下:
平均数 |
中位数 |
众数 |
方差 |
|
芒果树叶的长宽比 |
3.74 |
m |
4.0 |
0.0424 |
荔枝树叶的长宽比 |
1.91 |
1.95 |
n |
0.0669 |
【问题解决】
(1)上述表格中:m= ,n= ;
(2)①A同学说:“从树叶的长宽比的方差来看,我认为芒果树叶的形状差别大.”
②B同学说:“从树叶的长宽比的平均数、中位数和众数来看,我发现荔枝树叶的长约为宽的两倍.”
上面两位同学的说法中,合理的是 (填序号);
(3)现有一片长11cm,宽5.6cm的树叶,请判断这片树叶更可能来自于芒果、荔枝中的哪种树?并给出你的理由.
已知一次函数和
的图象都经过点A
,且与
轴分别交于B、C两点,求△ ABC的面积.
甲、乙两件服装的成本共500元,商店老板为获取利润,决定甲服装按50℅的利润标价,乙服装按40%的利润标价出售.在实际出售时,应顾客要求,两件服装均按标价的九折出售,这样商店共获利157元,求两件服装的成本各是多少元?
已知△ABC的三边分别为m2-n2,2mn,m2+n2(m,n为正整数,且m>n),求证:△ABC是直角三角形.
甲、乙两名同学进入初三后,某科6次考试成绩如图:
(1)请根据下图填写如表:
平均数 |
方差 |
中位数 |
众数 |
极差 |
|
甲 |
75 |
|
75 |
|
|
乙 |
|
33.3 |
|
|
15 |
(2)请你分别从以下两个不同的方面对甲、乙两名同学6次考试成绩进行分析:
①从平均数和方差相结合看;
②从折线图上两名同学分数的走势上看,你认为反映出什么问题?
解方程组: