游客
题文

综合与实践

【问题情境】数学活动课上,老师带领同学们开展“利用树叶的特征对树木进行分类”的实践活动.

【实践发现】同学们随机收集芒果树、荔枝树的树叶各10片,通过测量得到这些树叶的长y(单位:cm),宽x(单位:cm)的数据后,分别计算长宽比,整理数据如下:


1

2

3

4

5

6

7

8

9

10

芒果树叶的长宽比

3.8

3.7

3.5

3.4

3.8

4.0

3.6

4.0

3.6

4.0

荔枝树叶的长宽比

2.0

2.0

2.0

2.4

1.8

1.9

1.8

2.0

1.3

1.9

【实践探究】分析数据如下:


平均数

中位数

众数

方差

芒果树叶的长宽比

3.74

m

4.0

0.0424

荔枝树叶的长宽比

1.91

1.95

n

0.0669

【问题解决】

(1)上述表格中:m   n   

(2)①A同学说:“从树叶的长宽比的方差来看,我认为芒果树叶的形状差别大.”

B同学说:“从树叶的长宽比的平均数、中位数和众数来看,我发现荔枝树叶的长约为宽的两倍.”

上面两位同学的说法中,合理的是   (填序号);

(3)现有一片长11cm,宽5.6cm的树叶,请判断这片树叶更可能来自于芒果、荔枝中的哪种树?并给出你的理由.

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

某企业为了改善污水处理条件,决定购买A、B两种型号的污水处理设备共8台,其中每台的价格、月处理污水量如下表:


A型
B型
价格(万元/台)
8
6
月处理污水量(吨/月)
200
180

经预算,企业最多支出57万元购买污水处理设备,且要求设备月处理污水量不低于1490吨.
企业有哪几种购买方案?
哪种购买方案更省钱?

如图,抛物线c1:y=ax2-2ax-c与x轴交于A、B,且AB=6,与y轴交于C(0,-4 ).
求抛物线c1的解析式;
问抛物线c1上是否存在P、Q(点P在点Q的上方)两点,使得以A、C、P、Q为顶点的四边形为直角梯形,若存在,求P、Q两点坐标;若不存在,请说明理由;
抛物线c2与抛物线c1关于x轴对称,直线x=m分别交c1、c2于D、E两点,直线x=n分别交c1、c2于M、N两点,若四边形DMNE为平行四边形,试判断m和n间的数量关系,并说明理由.

如图,BD为⊙O的直径,AB=AC,AD交BC于点E,AE=2,ED=4

求证:△ABE∽△ADB;
求AB的长
延长DB到F,使得BF=BO,连接FA,试判断直线FA与⊙O的位置关系,并说明理由.

2011年3月11日13时46分日本发生了9.0级大地震,伴随着就是海啸。山坡上有一棵与水平面垂直的大树,海啸过后,大树被刮倾斜后折断倒在山坡上,树的顶部恰好接触到坡面(如图所示)。已知山坡的坡角∠AEF=23°,量得树干的倾斜角为∠BAC=38°,大树被折断部分和坡面所成的角∠ADC=60°,AD=4米。
求∠DAC的度数;
求这棵大树原来的高度是多少米?(结果精确到个位,参考数据:

西北地区冬季干旱,平安社区每天需从外地调运饮用水120吨.有关部门紧急部署,从甲、乙两水厂调运饮用水到供水点,甲厂每天最多可调出80吨,乙厂每天最多可调出90吨.从两水厂运水到平安社区供水点的路程和运费如下表:


到平安社区供水点的路程(千米)
运费(元/吨·千米)
甲厂
20
12
乙厂
14
15

若某天调运水的总运费为26700元,则从甲、乙两水厂各调运了多少吨饮用水?
设从甲厂调运饮用水x吨,总运费为W元,试写出W关于与x的函数关系式,怎样安排调运方案才能使每天的总运费最省?

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号