游客
题文

如图,在锐角△ABC中, A 60 ° ,点DE分别是边ABAC上一动点,连接BE交直线CD于点F

(1)如图1,若 A B A C ,且 B D C E B C D C B E ,求 C F E 的度数;

(2)如图2,若 A B A C ,且 B D A E ,在平面内将线段AC绕点C顺时针方向旋转60°得到线段CM,连接MF,点NMF的中点,连接CN.在点DE运动过程中,猜想线段BFCFCN之间存在的数量关系,并证明你的猜想;

(3)若 A B A C ,且 B D A E ,将 A B C 沿直线AB翻折至 A B C 所在平面内得到 A B P ,点HAP的中点,点K是线段PF上一点,将 P H K 沿直线HK翻折至 P H K 所在平面内得到 Q H K ,连接PQ.在点DE运动过程中,当线段PF取得最小值,且 Q K P F 时,请直接写出 PQ BC 的值.

科目 数学   题型 解答题   难度 较难
登录免费查看答案和解析
相关试题

小云统计了自己所住小区 5 1 日至 30 日的厨余垃圾分出量(单位:千克),相关信息如下:

a .小云所住小区 5 1 日至 30 日的厨余垃圾分出量统计图:

b .小云所住小区 5 1 日至 30 日分时段的厨余垃圾分出量的平均数如下:

1 )该小区 5 1 日至 30 日的厨余垃圾分出量的平均数约为 (结果取整数)

2 )已知该小区 4 月的厨余垃圾分出量的平均数为 60 ,则该小区 5 1 日至 30 日的厨余垃圾分出量的平均数约为 4 月的 倍(结果保留小数点后一位);

3 )记该小区 5 1 日至 10 日的厨余垃圾分出量的方差为 s 1 2 , 5 11 日至 20 日的厨余垃圾分出量的方差为 s 2 2 5 21 日至 30 日的厨余垃圾分出量的方差为 s 3 2 .直接写出 s 1 2 , s 2 2 , s 3 2 的大小关系.

小云在学习过程中遇到一个函数 y = 1 6 | x | ( x 2 - x + 1 ) ( x - 2 ) .下面是小云对其探究的过程,请补充完整:

1 )当 - 2 x < 0 时,对于函数 y 1 = | x | ,即 y 1 = - x ,当 - 2 x < 0 时, y 1 x 的增大而 ,且 y 1 > 0 ;对于函数 y 2 = x 2 - x + 1 ,当 - 2 x < 0 时, y 2 x 的增大而 ,且 y 2 > 0 ;结合上述分析,进一步探究发现,对于函数 y ,当 - 2 x < 0 时, y x 的增大而

2 )当 x 0 时,对于函数 y ,当 x 0 时, y x 的几组对应值如下表:

综合上表,进一步探究发现,当 x 0 时, y x 的增大而增大.在平面直角坐标系 xOy 中,画出当 x 0 时的函数 y 的图象.

3 )过点 ( 0 m ) m > 0 )作平行于 x 轴的直线 l ,结合( 1 )( 2 )的分析,解决问题:若直线 l 与函数 y = 1 6 | x | ( x 2 - x + 1 ) ( x - 2 ) 的图象有两个交点,则 m 的最大值是

如图, AB O 的直径, C BA 延长线上一点, CD O 的切线, D 为切点, OF AD 于点 E ,交 CD 于点 F

1 )求证: ADC = AOF

2 )若 sin C = 1 3 BD = 8 ,求 EF 的长.

在平面直角坐标系 xOy 中,一次函数 y = kx + b ( k 0 ) 的图象由函数 y = x 的图象平移得到,且经过点 ( 1 2 )

1 )求这个一次函数的解析式;

2 )当 x > 1 时,对于 x 的每一个值,函数 y = mx ( m 0 ) 的值大于一次函数 y = kx + b 的值,直接写出 m 的取值范围.

如图,菱形 ABCD 的对角线 AC BD 相交于点 O E AD 的中点,点 F , G AB 上, EF AB OG EF

(1 )求证:四边形 OEFG 是矩形;

2 )若 AD = 10 EF = 4 ,求 OE BG 的长.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号