对于平面直角坐标系xOy中的点P和线段AB,给出如下定义:在线段AB外有一点P,如果在线段AB上存在两点C、D,使得∠CPD=90°,那么就把点P叫做线段AB的悬垂点.
(1)已知点A(2,0),O(0,0)
①若,D(1,1),E(1,2),在点C,D,E中,线段AO的悬垂点是______;
②如果点P(m,n)在直线上,且是线段AO的悬垂点,求
的取值范围;
(2)如下图是帽形M(半圆与一条直径组成,点M是半圆的圆心),且圆M的半径
是1,若帽形内部的所有点是某一条线段的悬垂点,求此线段长的取值范围.
(本小题满分12分)
已知函数(
为常数).
(1)求函数的最小正周期,并指出其单调减区间;
(2)若函数在
上的最大值是2,试求实数
的值.
(本小题满分14分)已知函数
(1)当时, 证明: 不等式
恒成立;
(2)若数列满足
,证明数列
是等比数列,并求出数列
、
的通项公式;
(3)在(2)的条件下,若,证明:
.
(本小题满分14分)已知函数。
(1)当时,求曲线
在点
处的切线方程;
(2)求的单调区间。
(本小题满分14分) 已知中心在坐标原点的椭圆
经过点
,且点
为其右焦点。
(1)求椭圆的方程;
(2)是否存在平行于的直线
,使得直线
与椭圆
有公共点,且直线
与
的距离等于4?若存在,求出直线
的方程;若不存在,请说明理由。
(本小题满分14分) 如图3所示,四棱锥中,底面
为正方形,
平面
,
,
,
,
分别为
、
、
的中点.
(1)求证:;
(2)求二面角D-FG-E的余弦值.