给出定义:若(其中
为整数),则
叫做离实数
最近的整数,记作
,即
. 在此基础上给出下列关于函数
的四个命题:
①函数的定义域是R,值域是[0,
];
②函数的图像关于直线
(k∈Z)对称;
③函数是周期函数,最小正周期是1;
④函数在
上是增函数;
则其中真命题是__
如图,在四棱锥P—ABCD中,PD⊥底面ABCD,底面ABCD为正方形,PD=DC,E、F分别是AB,PB的中点.
(I)求证:EF⊥CD;
(II)求DB与平面DEF所成角的正弦值;
(III)在平面PAD内是否存在一点G,使G在平面PCB上的射影为△PCB的外心,若存在,试确定点G的位置;若不存在,说明理由.
已知△ABC的面积S满足
(I)求的取值范围;
(2)求函数的最大值.
在⊿ABC中,角A、B、C所对的边分别为a、b、c,且
(1)求tanC的值;(2)若⊿ABC最长的边为1,求b。
某射手进行射击训练,假设每次射击击中目标的概率为,且各次射击的结果互不影响.
(1)求射手在3次射击中,3次都击中目标的概率(用数字作答);
(2)求射手在3次射击中,恰有两次连续击中目标的概率(用数字作答);
(3)求射手第3次击中目标时,恰好射击了4次的概率(用数字作答).
已知数列的前
项和
.
(1) 求数列{}的通项公式;
(2)设,求数列{
}的前
项和.