游客
题文

某商品,根据以往资料统计,顾客采用的付款期数的分布列为


1
2
3
4
5

0.4
0.2
0.2
0.1
0.1

商场经销一件该商品,采用1期付款,其利润为200元;分2期或3期付款,其利润为250元;分4期或5期付款,其利润为300元.表示经销一件该商品的利润.(1)求事件:“购买该商品的3位顾客中,至少有1位采用1期付款”的概率;(2)求的分布列及期望

科目 数学   题型 解答题   难度 容易
知识点: 随机思想的发展
登录免费查看答案和解析
相关试题

已知向量,且,其中A、B、C是ABC的内角,分别是角A,B,C的对边。
(Ⅰ)求角C的大小;
(Ⅱ)求的取值范围;

对于定义在区间D上的函数,若存在闭区间和常数,使得对任意,都有,且对任意∈D,当时,恒成立,则称函数为区间D上的“平底型”函数.
(Ⅰ)判断函数是否为R上的“平底型”函数?并说明理由;
(Ⅱ)设是(Ⅰ)中的“平底型”函数,k为非零常数,若不等式对一切R恒成立,求实数的取值范围;
(Ⅲ)若函数是区间上的“平底型”函数,求的值.

已知椭圆中心在原点,焦点在y轴上,离心率为,以原点为圆心,椭圆短半轴长为半径的圆与直线相切.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)设点F是椭圆在y轴正半轴上的一个焦点,点A,B是抛物线上的两个动点,且满足,过点A,B分别作抛物线的两条切线,设两切线的交点为M,试推断是否为定值?若是,求出这个定值;若不是,说明理由.

如图所示,某市政府决定在以政府大楼O为中心,正北方向和正东方向的马路为边界的扇形地域内建造一个图书馆.为了充分利用这块土地,并考虑与周边环境协调,设计要求该图书馆底面矩形的四个顶点都要在边界上,图书馆的正面要朝市政府大楼.设扇形的半径OM=R ,,OB与OM之间的夹角为.
(Ⅰ)将图书馆底面矩形ABCD的面积S表示成的函数.
(Ⅱ)若R=45 m,求当为何值时,矩形ABCD的面积S有最大值?其最大值是多少?(精确到0.01m2)

把所有正整数按上小下大,左小右大的原则排成如图所示的数表,其中第行共有个正整数.设ij∈N*)表示位于这个数表中从上往下数第i行,从左往右数第j个数.

(Ⅰ)若=2010,求ij的值;
(Ⅱ)记N*),试比较的大小,并说明理由.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号