(本小题满分14分)设b>0,椭圆方程为,抛物线方程为.如图4所示,过点F(0,b+2)作x轴的平行线,与抛物线在第一象限的交点为G.已知抛物线在点G的切线经过椭圆的右焦点.(1)求满足条件的椭圆方程和抛物线方程;(2)设A,B分别是椭圆长轴的左、右端点,试探究在抛物线上是否存在点P,使得△ABP为直角三角形?若存在,请指出共有几个这样的点?并说明理由(不必具体求出这些点的坐标).
在平面直角坐标系中,已知的两个顶点,且三边AC、BC、AB的长成等差数列,求顶点A的轨迹方程.
P为椭圆上一点,为它的一个焦点,求证:以为直径的圆与以长轴为直径的圆相切.
已知椭圆的对称轴是坐标轴,O为坐标原点,F是一个焦点,A是一个顶点,若椭圆的长轴长是6,且,求椭圆的方程.
已知椭圆,试确定的值,使得在此椭圆上存在不同两点关于直线对称。
已知椭圆,、是椭圆上的两点,线段的垂直平分线与轴相交于点.证明:
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号