游客
题文

(本小题满分12分)如图,四棱锥P-ABCD中,PA⊥平面ABCD,PA=AB=BC=2,E为PA的中点,过E作平行于底面的平面EFGH,分别与另外三条侧棱相交于点F、G、H. 已知底面ABCD为直角梯形,AD∥BC,AB⊥AD,∠BCD=135°.

(1)      求异面直线AF与BG所成的角的大小;
(2)      求平面APB与平面CPD所成的锐二面角的大小.

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

已知函数为常数,
(1)当时,求函数处的切线方程;
(2)当处取得极值时,若关于的方程上恰有两个不相等的实数根,求实数的取值范围;
(3)若对任意的,总存在,使不等式成立,求实数的取值范围。

椭圆的右焦点与抛物线的焦点重合,过作与轴垂直的直线与椭圆交于两点,与抛物线交于两点,且
(1)求椭圆的方程;
(2)若过点的直线与椭圆相交于两点,设为椭圆上一点,且满足
为坐标原点),当时,求实数的取值范围。

(本小题满分14分)
在四棱锥中,//平面.

(Ⅰ)设平面平面,求证://
(Ⅱ)求证:平面
(Ⅲ)设点为线段上一点,且直线与平面所成角的正弦值为,求的值.

已知三个正整数按某种顺序排列成等差数列。
(1)求的值;
(2)若等差数列的首项、公差都为,等比数列的首项、公比也都为,前项和分别为,且,求满足条件的正整数的最大值。

在锐角中,分别是内角所对边长,且满足

求角的大小;
,求

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号