(本小题满分14分)已知函数,
,且函数
与
的图象至多有一个公共点。
(Ⅰ)证明:当时,
;
(Ⅱ)若不等式对题设条件中的
总成立,求
的最小值.
((本题满分12分)
已知椭圆方程为,斜率为
的直线
过椭圆的上焦点且与椭圆相交于
,
两点,线段
的垂直平分线与
轴相交于点
.
(Ⅰ)求的取值范围;
(Ⅱ)求△面积的最大值.
(本小题满分12分)
如图,在底面是正方形的四棱锥P—ABCD中,PA⊥面ABCD,BD交AC于点E,F是PC中点,G为AC上一点.
(1)求证:BD⊥FG;
(2)确定点G在线段AC上的位置,使FG//平面PBD,并说明理由.
(3)当二面角B—PC—D的大小为时,求PC与底面ABCD所成角的正切值.
(本小题满分12分)某人玩掷正方体骰子走跳棋的游戏,已知骰子每面朝上的概率都是,棋盘上标有第0站,第1站,第2站,……,第100站。一枚棋子开始在第0站,选手每掷一次骰子,棋子向前跳动一次,若掷出朝上的点数为1或2,棋子向前跳一站;若掷出其余点数,则棋子向前跳两站,直到棋子跳到第99站(胜利大本营)或第100站(失败大本营)时,该游戏结束。设棋子跳到第n站的概率为;
(1)求;(2) 求证:为等比数列;(3)求玩该游戏获胜的概率。
.(本小题满分12分)
在△ABC中,a,b,c分别是角A,B,C的对边,A为锐角,已知向量
(1)若,求实数m的值。
(2)若,求△ABC面积的最大值.
![]() |
.本题有(1)、(2)、(3)三个选答题,每题7分,请考生任选2题作答,满分14分.如果多做,则按所做的前两题记分.作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中.
(1)(选修4—2 矩阵与变换)(本小题满分7分)
已知矩阵,向量
.
(Ⅰ) 求矩阵的特征值
、
和特征向量
、
;
(Ⅱ)求的值.
(2)(选修4—4 参数方程与极坐标)(本小题满分7分)
在极坐标系中,过曲线外的一点
(其中
为锐角)作平行于
的直线
与曲线分别交于
.
(Ⅰ) 写出曲线和直线
的普通方程(以极点为原点,极轴为
轴的正半轴建系);
(Ⅱ)若成等比数列,求
的值.
(3)(选修4—5 不等式证明选讲)(本小题满分7分)
已知正实数、
、
满足条件
,
(Ⅰ) 求证:;
(Ⅱ)若,求
的最大值.