如图,四棱锥
的底面是正方形,
平面
,
,点
的点,且
.
(Ⅰ)求证:对任意的 ,都有 :
(Ⅱ)若二面角 的大小为 ,求 的值.
已知.
求值:(1)(2)
设{Fn}是斐波那契数列,其中F1=F2=1,Fn= Fn–1+Fn–2(n>2),其程序框图如右图所示是表示输出斐波那契数列的前20项的算法.请根据框图写一个程序。
下表提供了某厂节能降耗技术改革后生产甲产品过程中记录的产量x(t)与相应的生产能耗Y(吨标准煤)的几组对照数据:
x |
3 |
4 |
5 |
6 |
y |
2.5 |
3 |
4 |
4.5 |
(1)请画出上表数据的散点图;
(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程;
(3)已知该厂技改前生产100 t甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性回归方程,预测生产100 t甲产品的生产能耗比技改前降低多少吨标准煤?
(参考数值:3×2.5 + 4×3 + 5×4 + 6×4.5=66.5)
画出程序框图,用二分法求方程在(20,21)之间的近似根(精确度为0.005)
学校开展的综合实践活动中,某班进行了小制作评比,作品上交时间为5月1日至30日,评委会把同学们上交作品的件数按5天一组分组统计,绘制了频率分布直方图(如图所示),已知从左到右各长方形的高的比为2:3:4:6:4:1,第三组的频数为12,请解答下列问题:
(1)本次活动共有多少件作品参加评比?
(2)哪组上交的作品数最多?有多少件?
(3)经过评比,第4组和第6组分别有10件、2件作品获奖,这两组 哪 组获奖率较高?