a11,a12,……a18
a21,a22,……a28
……………………
64个正数排成8行8列, 如下所示: a81,a82,……a88
在符合中,i表示该数所在的行数,j表示该数所在的列数。已知每一行中的数依次都成等差数列,而每一列中的数依次都成等比数列(每列公比q都相等)且
,
,
。
⑴若,求
和
的值。
⑵记第n行各项之和为An(1≤n≤8),数列{an}、{bn}、{cn}满足,联
(m为非零常数),
,且
,求
的取值范围。
⑶对⑵中的,记
,设
,求数列
中最大项的项数。
已知函数f(x)=,定义域为[-1,1]
(Ⅰ)若a=b=0,求f(x)的最小值; (Ⅱ)若对任意x∈[-1,1],不等式6≤f(x)≤5+均成立,求实数a,b的值.
设=
(a>0)为奇函数,且
min=
,数列{an}与{bn}满足 如下关系:a1=2,
,
.
(1)求f(x)的解析表达式; (2) 证明:当n∈N+时, 有bn.
设函数、
R)。
(1)若,过两点(0,0)、(
,0)的中点作与
轴垂直的直线,与函数
的图象交于点
,求证:函数
在点P处的切线点为(
,0)。
(2)若),且当
时
恒成立,求实数
的取值范围。
.在直角坐标平面中,△ABC的两个顶点为 A(0,-1),B(0, 1)平面内两点G、M同时满足①,②
=
=
③
∥
(1)求顶点C的轨迹E的方程
(2)设P、Q、R、N都在曲线E上 ,定点F的坐标为(, 0) ,已知
∥
,
∥
且
·
= 0.求四边形PRQN面积S的最大值和最小值.