设数列{an},{bn}都是等差数列,它们的前n项的和分别为Sn , Tn,若对一切n ∈ N*,都有Sn+3 = Tn.(1)若a1 ≠ b1,试分别写出一个符号条件的数列{an}和{bn};(2)若a1 + b1 = 1,数列{cn}满足:cn = 4 an + l(–1)n–12bn,且当n ∈ N*时,cn+1 ≥ cn恒成立,求实数l的最大值.
已知向量=(1,2),
=(cosa,sina),设
=
+t
(
为实数).
(1)若a=,求当|
|取最小值时实数
的值;
(2)若⊥
,问:是否存在实数
,使得向量
–
和向量
的夹角为
,若存在,请求出t的值;若不存在,请说明理由.
(3)若⊥
,求实数
的取值范围A,并判断当
时函数
的单调性.
已知函数的图象与
轴的交点为
,它在
轴右侧的第一个最高点和第一个最低点的坐标分别为
和
.
(1)求的解析式;
(2)若锐角满足
,求
的值.
已知向量,
(1)当时,求
的取值集合;
(2)求函数的单调递增区间 .
在△ABC中, 若I是△ABC的内心, AI的延长线交BC于D, 则有称之为三角形的内角平分线定理, 现已知AC=2, BC=3, AB=4, 且
, 求实数
及
的值.
设两向量满足
,
的夹角为60°,若向量
与向量
的夹角为钝角,求实数t的取值范围.