(本题满分共12分)某流感病研究中心对温差与甲型H1N1病毒感染数之间的相关关系进行研究,他们每天将实验室放入数量相同的甲型H1N1病毒和100头猪,然后分别记录了4月1日至4月5日每天昼夜温差与实验室里100头猪的感染数,得到如下资料:
日 期 |
4月1日 |
4月2日 |
4月3日 |
4月4日 |
4月5日 |
温 差 |
10 |
13 |
11 |
12 |
7 |
感染数 |
23 |
32 |
24 |
29 |
17 |
(1)求这5天的平均感染数;(2)从4月1日至4月5日中任取2天,记感染数分别为用
的形式列出所有的基本事件, 其中
视为同一事件,并求
的事件A的概率。
已知盒中装有仅颜色不同的玻璃球6个,其中红球2个、黑球3个、白球1个.
(1)从中任取1个球, 求取得红球或黑球的概率;
(2)列出一次任取2个球的所有基本事件;
(3)从中取2个球,求至少有一个红球的概率.
如图,在直三棱柱中,
,点
是
的中点.
求证:(1);(2)
平面
.
已知角的终边在
上,求
(1)的值;
(2)的值.
已知函数,
.
(1)若曲线在点
处的切线与直线
垂直,求
的值;
(2)求函数的单调区间;(3)当
,且
时,证明:
.
已知抛物线,点
关于
轴的对称点为
,直线
过点
交抛物线于
两点.
(1)证明:直线的斜率互为相反数;
(2)求面积的最小值;
(3)当点的坐标为
,
且
.根据(1)(2)推测并回答下列问题(不必说明理由):
①直线的斜率是否互为相反数? ②
面积的最小值是多少?