探究函数,x∈(0,+∞)的最小值,并确定相应的x的值,列表如下:
x |
… |
0.5 |
1 |
1.5 |
1.7 |
1.9 |
2 |
2.1 |
2.2 |
2.3 |
3 |
4 |
5 |
7 |
… |
y |
… |
8.5 |
5 |
4.17 |
4.05 |
4.005 |
4 |
4.005 |
4.102 |
4.24 |
4.3 |
5 |
5.8 |
7.57 |
… |
请观察表中y值随x值变化的特点,完成下列问题:
(1)若函数,(x>0)在区间(0,2)上递减,则在 上递增;
(2)当x= 时,,(x>0)的最小值为 ;
(3)试用定义证明,(x>0)在区间(0,2)上递减;
(4)函数,(x<0)有最值吗?是最大值还是最小值?此时x为何值?
(5)解不等式.
解题说明:(1)(2)两题的结果直接填写在横线上;(4)题直接回答,不需证明。
某保险公司新开设了一项保险业务,若在一年内事件发生,该公司要赔偿
元.设在一年内
发生的概率为
,为使公司收益的期望值等于
的百分之十,公司应要求顾客交多少保险金?
甲乙两人独立解某一道数学题,已知该题被甲独立解出的概率为,被甲或乙解出的概率为
,(1)求该题被乙独立解出的概率;(2)求解出该题的人数
的数学期望和方差
要制造一种机器零件,甲机床废品率为,而乙机床废品率为
,而它们
的生产是独立的,从它们制造的产品中,分别任意抽取一件,求:
(1)其中至少有一件废品的概率;(2)其中至多有一件废品的概率.
三个元件正常工作的概率分别为
将它们中某两个元件并联后再和第三元件串联接入电路.
(Ⅰ)在如图的电路中,电路不发生故障的概率是多少?
(Ⅱ)三个元件连成怎样的电路,才能使电路中不发生故障的概率最大?请画出此时电路图,并说明理由.
如图,两点之间有
条网线并联,它们能通过的最大信息量分别为
.现从中任取三条网线且使每条网线通过最大的信息量.
(I)设选取的三条网线由到
可通过的信息总量为
,当
时,则保证信息畅通.求线路信息畅通的概率;
(II)求选取的三条网线可通过信息总量的数学期望.