游客
题文

如图,在四棱锥O—ABCD中,底面ABCD是菱形,OA⊥平面ABCD,E为OA的中点,F为BC的中点,求证:
⑴平面BDO⊥平面ACO;⑵直线EF∥平面OCD.

科目 数学   题型 解答题   难度 较易
登录免费查看答案和解析
相关试题

已知关于x的不等式(其中).
(Ⅰ)当a=4时,求不等式的解集;
(Ⅱ)若不等式有解,求实数a的取值范围.

在极坐标系中,曲线,过点A(5,α)(α为锐角且)作平行于的直线,且与曲线L分别交于B,C两点.
(Ⅰ)以极点为原点,极轴为x轴的正半轴,取与极坐标相同单位长度,建立平面直角坐标系,写出曲线L和直线的普通方程;
(Ⅱ)求|BC|的长.

如图,圆O1与圆O2相交于A、B两点,AB是圆O2的直径,过A点作圆O1的切线交圆O2于点E,并与BO1的延长线交于点P,PB分别与圆O1、圆O2交于C,D两点.
求证:(Ⅰ)PA·PD=PE·PC;
(Ⅱ)AD=AE.

已知函数
(I)当的单调区间;
(II)若函数的最小值;
(III)若对任意给定的,使得的取值范围.

是以为焦点的抛物线是以直线为渐近线,以为一个焦点的双曲线.
(1)求双曲线的标准方程;
(2)若在第一象限内有两个公共点,求的取值范围,并求的最大值;
(3)若的面积满足,求的值.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号