已知双曲线的两条渐近线都过坐标原点,且都与以点为圆心,
为半径的圆相切,又该双曲线的一个顶点是点
关于直线
的对称点。(1)求此双曲线的方程;(2)若直线
过
点,且与直线
垂直,在双曲线上求一点
,使
到此直线的距离为
。
(本小题满分12分)盒中有大小相同的编号为1,2,3,4,5,6的六只小球,规定:从盒中一次摸出'2只球,如果这2只球的编号均能被3整除,则获一等奖,奖金10元,如果这2只球的编号均为偶数,则获二等奖,奖金2元,其他情况均不获奖.
(1)若某人参加摸球游戏一次获奖金x元,求x的分布列及期望;
(2)若某人摸一次且获奖,求他获得一等奖的概率.
(本小题满分12分)在△ABC中,已知A=45°,cosB =.
(I)求cosC的值;
(11)若BC=" 10" , D为AB的中点,求CD的长.
(本小题满分14分)如图,已知直线OP1,OP2为双曲线E:的渐近线,△P1OP2的面积为
,在双曲线E上存在点P为线段P1P2的一个三等分点,且双曲线E的离心率为
.
(1)若P1、P2点的横坐标分别为x1、x2,则x1、x2之间满足怎样的关系?并证明你的结论;
(2)求双曲线E的方程;
(3)设双曲线E上的动点,两焦点
,若
为钝角,求
点横坐标
的取值范围.
(本小题满分14分)已知函数(其中e是自然对数的底数,k为正数)
(1)若在
处取得极值,且
是
的一个零点,求k的值;
(2)若,求
在区间
上的最大值.
(本小题满分13分)如图是某直三棱柱(侧棱与底面垂直)被削去上底后的直观图与三视图的侧视图,俯视图,在直观图中,M是BD的中点,N是BC的中点,侧视图是直角梯形,俯视图是等腰直角三角形,有关数据如图所示.
(1)求该几何体的体积;
(2)求证:AN∥平面CME;
(3)求证:平面BDE⊥平面BCD