某研究机构准备举行一次数学新课程研讨会,共邀请50名一线教师参加,使用不同版本教材的教师人数如下表所示:
版本 |
人教A版 |
人教B版 |
苏教版 |
北师大版 |
人数 |
20 |
15 |
5 |
10 |
(Ⅰ)从这50名教师中随机选出2名,求2人所使用版本相同的概率;
(Ⅱ)若随机选出2名使用人教版的教师发言,设使用人教A版的教师人数为,求随机变量
的分布列和数学期望。
已知函数(其中
)
(1)若,求函数
的单调区间及极小值;
(2)若直线对任意的
都不是曲线
的切线,求
的最小值及实数
的取值范围.
设椭圆的焦点分别为
、
,直线
:
交
轴于点
,且
.
(1)试求椭圆的方程;
(2)过、
分别作互相垂直的两直线与椭圆分别交于
、
、
、
四点(如图所示),试求四边形
面积的最大值和最小值.
如图,PC⊥平面ABC,∠ACB=90°,D为AB中点,
AC=BC=PC=2.
(Ⅰ)求证:AB⊥平面PCD;
(Ⅱ)求异面直线PD与BC所成角的大小;
(Ⅲ)设M为线段PA上的点,且AP=4AM,求点A到平面BCM的距离.
已知平面区域恰好被面积最小的圆
及其内部所覆盖.
(1)试求圆的方程.
(2)若斜率为1的直线与圆C交于不同两点
满足
,求直线
的方程.