7人按要求排成一纵队,其中A、B、C三人的前后顺序一定,那么有多少种不同的排法?
(本小题满分12分)已知椭圆C:(a>b>0)的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形.
(1)求椭圆C的标准方程.
(2)设F为椭圆C的左焦点,T为直线x=-3上任意一点,过F作TF的垂线交椭圆C于点P,Q.
①证明:OT平分线段PQ(其中O为坐标原点);
②当最小时,求点T的坐标.
(本小题满分12分)已知椭圆C:的左、右焦点分别是F1、F2,离心率为e.直线l:y=ex+a与x轴、y轴分别交于A、B两点,M是直线l与椭圆C的一个公共点,P是点F1关于直线l的对称点,设
。
(1)证明:;
(2)确定的值,使得
是等腰三角形。
(本小题12分)如图所示,已知四棱锥P-ABCD的底面为直角梯形,AB//DC,,PA
底面ABCD,且PA=AD=DC=
AB=1,M是PB的中点。
(1)证明:面PAD面PCD;
(2)求AC与PB所成角的余弦值。
(本小题13分)已知A为椭圆上的点,过A作AB
x轴,垂足为B,延长BA到C使得
=
。
(1) 求点C的轨迹方程;
(2)直线l过点D (2,3)且与点C的轨迹只有一个交点,求l 的方程。
(本小题13分)已知:一个圆锥的底面半径为R,高为H,在其中有一个高为x的内接圆柱.
(1)求圆柱的侧面积;
(2)x为何值时,圆柱的侧面积最大。