已知,
⑴判断的奇偶性; ⑵证明
.
已知函数.
(1)当a = 4,解不等式;
(2)若函数是奇函数,求a的值;
(3)若不等式在
上恒成立,求实数a的取值范围.
(本小题满分13分)
已知数列满足:
,
(I)求得值;
(II)设求证:数列
是等比数列,并求出其通项公式;
(III)对任意的,在数列
中是否存在连续的
项构成等差数列?若存在,写出这
项,并证明这
项构成等差数列;若不存在,说明理由。
(本小题满分13分)
已知椭圆C的对称中心为原点O,焦点在轴上,离心率为
,且点
在该椭圆上。
(I)求椭圆C的方程;
(II)过椭圆C的左焦点的直线
与椭圆C相交于A,B两点,若
的面积为
,求圆心在原点O且与直线相切的圆的方程。
(本小题满分14分)
已知函数与函数
。
(I)若,
的图像在点
处有公共的切线,求实数
的值;
(II)设,求函数
的值。
(本小题满分14分)
如图:在四棱锥中,底面ABCD是菱形,
,
平面ABCD,点M,N分别为BC,PA的中点,且
(I)证明:平面AMN;
(II)求三棱锥N的体积;
(III)在线段PD上是否存在一点E,使得平面ACE;若存在,求出PE的长,若不存在,说明理由。