游客
题文

(本题满分12分)已知,函数.(1)设曲线在点处的切线为,若与圆相切,求的值;(2)求函数的单调区间;(3)求函数在[0,1]上的最小值。

科目 数学   题型 解答题   难度 较易
登录免费查看答案和解析
相关试题

已知:函数.(其中e为自然对数的底数,e=2.71828…〉.
(1) 当时,求函数的图象在点处的切线方程;
(2) 当时,试求函数的极值;
(3)若,则当时,函数的图象是否总在不等式所表示的平面区域内,请写出判断过程.

已知椭圆的右焦点为,设短轴的一个端点为,原点到直线的距离为,过原点和轴不重合的直线与椭圆相交于两点,且.
(1) 求椭圆的方程;
(2) 是否存在过点的直线与椭圆相交于不同的两点且使得成立?若存在,试求出直线的方程;若不存在,请说明理由.

如图,在正三棱柱中,的中点,是线段上的动点,且
(1)若,求证:
(2) 求二面角的余弦值;
(3) 若直线与平面所成角的大小为,求的最大值.

已知各项全不为零的数列的前项和为,且其中
(1) 求数列的通项公式;
(2)在平面直角坐标系内,设点,试求直线斜率的最小值(为坐标原点).

单位为了提髙员工身体素质,特于近期举办了一场跳绳比赛,其中男员工12人,女员工18人,其成绩编成如右所示的茎叶图(单位:分).若分数在175分以上(含175分)者定为“运动健将”,并给以特别奖励,其它人员则给予“运动积极分子”称号,同时又特别提议给女“运动健将”休假一天的待遇.
(1)若用分层抽样的方法从“运动健将”和“运动积极分子”中提取10人,然后再从这10人中选4人,那么至少有1人是“运动健将”的概率是多少?
(2)若从所有“运动健将”中选3名代表,用表示所选代表中女“运动健将”的人数,试写出的分布列,并的数学期望.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号