某单位为了提髙员工身体素质,特于近期举办了一场跳绳比赛
,其中
男员工12人,女员工18人,其成绩编成如右所示的茎叶图(单位:分).若分数在175分以上(含175分)者定为“运动健将”,并给
以特别奖励,其它人员则给予“运动积极分子”称号,同时又特别提议给女“运动健将”休假一天的待遇.
(1)若用分层抽样的方法从“运动健将”和“运动积极分子”中提取10人,然后再从这10人中选4人,那么至少有1人是“运动健将”的概率是多少?
(2)若从所有“运动健将”中选3名代表,用表示所选代表中女“运动健将”的人数,试写出
的分布列,并
求
的数学期望.
已知函数f(x)=在x=-2处有极值.
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)若函数f(x)在区间[-3,3]上有且仅有一个零点,求b的取值范围.
已知数列的前n项和为
,
,
,等差数列
中
,且
,又
、
、
成等比数列.
(Ⅰ)求数列、
的通项公式;
(Ⅱ)求数列的前n项和Tn.
设集合P={1,2,3}和Q={-1,1,2,3,4},分别从集合P和Q中随机取一个数作为和
组成数对(
,并构成函数
(Ⅰ)写出所有可能的数对(,并计算
,且
的概率;
(Ⅱ)求函数在区间[
上是增函数的概率.
如图,在四棱锥中,底面
是菱形,
,
为
的中点,
为
的中点.
(Ⅰ)证明:平面平面
;
(Ⅱ)证明:直线.
已知函数f(x)=(其中A>0,
)的图象如图所示。
(Ⅰ)求A,w及j的值;
(Ⅱ)若tana=2,求的值。