在平面直角坐标系 x O y 中,抛物线 C 的顶点在原点,经过点 A ( 2 , 2 ) ,其焦点 F 在 x 轴上.
(1)求抛物线 C 的标准方程; (2)求过点 F ,且与直线 O A 垂直的直线的方程; (3)设过点 M ( m , 0 ) ( m > 0 ) 的直线交抛物线 C 于 D 、 E 两点, M E = 2 D M ,记 D 和 E 两点间的距离为 f ( m ) ,求 f ( m ) 关于 m 的表达式.
已知圆x2+y2-2(m-1)x+2(m -1)y+2 m 2-6 m+4=0过坐标原点,求实数m的值.
自A(4,0)引圆x2+y2=4的割线ABC,求弦BC中点P的轨迹方程.
已知圆C同时满足下列三个条件:①圆心在直线x-3y=0上; ②与y轴相切;③在x轴上截得的弦长AB为42.求圆C的一般方程.
下列方程能否表示圆?若能表示圆,求出圆心和半径. (1)2x2+y2-7y+5=0; (2)x2-xy+y2+6x+7y=0; (3)x2+y2-2x-4y+10=0; (4)2x2+2y2-5x=0.
已知一曲线是与两个定点O(0,0)、A(3,0)距离的比为的点的轨迹,求出曲线的方程.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号