有外形相同的球分装三个盒子,每盒10个,其中,第一个盒子中7个球标有字母A,3个球标有字母B;第二个盒子中有红球和白球各5个;第三个盒子中则有红球8个,白球2个.试验按如下规则进行:先在第一个盒子中任取一球,若取得标有字母A的球,则在第二个盒子中任取一球;若第一次取得标有字母B的球,则在第三个盒子中任取一球.若第二次取出的是红球,则称试验成功.求试验成功的概率.
已知关于x的一元二次方程x2-2(a-2)x-b2+16=0.
(1)若a,b是一枚骰子掷两次所得到的点数,求方程有两正根的概率;
(2)若a∈[2,6],b∈[0,4],求方程没有实根的概率.
用0,1,2,3,4,5这六个数字(允许重复),组成四位数.
( I)可以组成多少个四位数?
( II)可组成多少个恰有两个相同数字的四位数?
设函数
(Ⅰ)当时,求函数
的极值;
(Ⅱ)当时,讨论函数
的单调性.
(Ⅲ)若对任意及任意
,恒有
成立,求实数
的取值范围.
已知椭圆的左顶点
,过右焦点
且垂直于长轴的弦长为
.
(Ⅰ)求椭圆的方程;
(Ⅱ)若过点的直线
与椭圆交于点
,与
轴交于点
,过原点与
平行的直线与椭圆交于点
,求证:
为定值.
如图,已知为平行四边形,
,
,
,点
在
上,
,
,
与
相交于
.现将四边形
沿
折起,使点
在平面
上的射影恰在直线
上.
(Ⅰ) 求证:平面
;
(Ⅱ) 求折后直线与平面
所成角的余弦值.