已知椭圆的离心率为
,直线
:
与以原点为圆心、以椭圆
的短半轴长为半径的圆相切.
(I)求椭圆的方程;
(II)设椭圆的左焦点为
,右焦点
,直线
过点
且垂直于椭圆的长轴,动直线
垂直
于点
,线段
垂直平分线交
于点
,求点
的轨迹
的方程;
(III)设与
轴交于点
,不同的两点
在
上,且满足
求
的取值范围.
如图,已知平面平面
,
与
分别是棱长为1与2的正三角形,
//
,四边形
为直角梯形,
//
,
,点
为
的重心,
为
中点,
,
(Ⅰ)当时,求证:
//平面
(Ⅱ)若直线与
所成角为
,试求二面角
的余弦值.
已知数列为等比数列,其前
项和为
,已知
,且对于任意的
有
,
,
成等差;
(Ⅰ)求数列的通项公式;
(Ⅱ)已知(
),记
,若
对于
恒成立,求实数
的范围.
在△ABC中,角所对的边分别为
,
,△ABC的面积为
,
(Ⅰ)若,求
;
(Ⅱ)若为锐角,
,求
的取值范围.
已知函数.
(1)求在区间
上的最大值
;
(2)若的图象与
的图象有且仅有三个不同的交点,求实数m的取值范围.
已知:函数在
处取得极值
,其中
为常数.
(1)试确定的值;
(2)讨论函数的单调区间;
(3)若对任意,不等式
恒成立,求c的取值范围.