已知椭圆的离心率为
,直线
:
与以原点为圆心、以椭圆
的短半轴长为半径的圆相切.
(I)求椭圆的方程;
(II)设椭圆的左焦点为
,右焦点
,直线
过点
且垂直于椭圆的长轴,动直线
垂直
于点
,线段
垂直平分线交
于点
,求点
的轨迹
的方程;
(III)设与
轴交于点
,不同的两点
在
上,且满足
求
的取值范围.
已知椭圆的一个顶点为B(0,4),离心率
,直线
交椭圆于M,N两点.
(1)若直线的方程为y=x-4,求弦MN的长:
(2)如果BMN的重心恰好为椭圆的右焦点F,求直线
的方程.
如图,在四棱锥P-ABCD中,侧面PAD底面ABCD,侧棱
,底面ABCD为直角梯形,其中BC//AD,AB
AD,AD=2,AB=BC=l,E为AD中点.
(1)求证:PE平面ABCD:
(2)求异面直线PB与CD所成角的余弦值:
(3)求点A到平面PCD的距离.
已知实数.
(1)求直线y=ax+b不经过第四象限的概率:
(2)求直线y=ax+b与圆有公共点的概率.
己知A、B、C分别为△ABC的三边a、b、c所对的角,向量,且
.
(1)求角C的大小:
(2)若sinA,sinC,sinB成等差数列,且,求边c的长.
已知函数.
(1)当a=l时,求的单调区间;
(2)若函数在
上是减函数,求实数a的取值范围;
(3)令,是否存在实数a,当
(e是自然对数的底数)时,函数g(x)最小值是3,若存在,求出a的值;若不存在,说明理由.