已知{an}是等差数列,d为公差且不为0,a1和d均为实数,它的前n项和记作Sn,设集合A={(an,)|n∈N*},B={(x,y)|
x2-y2=1,x,y∈R}.
试问下列结论是否正确,如果正确,请给予证明;如果不正确,请举例说明
(1)若以集合A中的元素作为点的坐标,则这些点都在同一条直线上;
(2)A∩B至多有一个元素;
(3)当a1≠0时,一定有A∩B≠.
(本题12分)某研究机构对高三学生的记忆力x和判断力y进行统计分析,得下表数据
x |
6 |
8 |
10 |
12 |
y |
2 |
3 |
5 |
6 |
(1)请画出上表数据的散点图;(2)请根据上表提供的数据,求出y关于x的线性回归方程;(3)试根据(2)求出的线性回归方程,预测记忆力为9的同学的判断力.(相关公式:
,
)
(本题12分)已知在的展开式中,第
项的二项式系数与第2项的二项式系数的比为
.(1)求
的值;(2)求含
的项的系数;(3)求展开式中系数最大的项.
(本题10分)某校高三某班的一次数学测试成绩(满分为100分)的茎叶图和频率分布直方图都受到不同程度的破坏,但可见部分如下,据此解答如下问题:
(1)求分数在[50,60)的频率及全班人数;(2)求分数在[80,90)之间的频数,并计算频率分布直方图中[80,90)间的矩形的高;(3)若要从分数在[80,100]之间的试卷中任取两份分析学生失分情况,在抽取的试卷中,求分数在[90,100]之间的份数的数学期望
.
(本小题满分12分)设为奇函数,a为常数。
(1)求a的值;
(2)证明在区间
上为增函数;
(3)若对于区间上的每一个
的值,不等式
恒成立,求实数m的取值范围。
(本小题满分12分)
定义在上的偶函数
,已知当
时的解析式
(Ⅰ)写出在
上的解析式;
(Ⅱ)求在
上的最大值.