如图所示,已知P(4,0)是圆x2+y2=36内的一点,A、B是圆上两动点,且满足∠APB=90°,求矩形APBQ的顶点Q的轨迹方程.
已知函数
(其中
)
(I)求函数
的值域;
(II)若对任意的
,函数
,
的图象与直线
有且仅有两个不同的交点,试确定
的值(不必证明),并求函数
的单调增区间.
设正整数数列
满足:
,且对于任何
,有
.
(1)求
;
(2)求数列
的通项
.
设动点
到点
和
的距离分别为
和
,
,且存在常数
(
,使得
.
(1)证明:动点
的轨迹
为双曲线,并求出
的方程;
(2)过点
作直线交双曲线
的右支于
、
两
点,试确定λ的范围,使
,其中点O为坐标原点.
如图是一个直三棱柱(以
为底面)被一平面所截得到的几何体,截面为
.已知
,
,
,
,
.
(1)设点
是
的中点,证明:
平面
(2)求二面角
的大小;
(3)求此几何体的体积.
某陶瓷厂准备烧制甲、乙、丙三件不同的工艺品,制作过程必须先后经过两次烧制,当第一次烧制合格后方可进入第二次烧制,两次烧制过程相互独立.根据该厂现有的技术水平,经过第一次烧制后,甲、乙、丙三件产品合格的概率依次为0.5,  0.6,  0.4.经过第二次烧制后,甲、乙、丙三件产品合格的概率依次为0.6,0.5,0.75.
(1)求第一次烧制后恰有一件产品合格的概率;
(2)经过前后两次烧制后,合格工艺品的个数为
,求随机变量
的期望.