已知斜三棱柱ABC—A1B1C1中,A1C1=B1C1=2,D、D1分别是AB、A1B1的中点,平面A1ABB1⊥平面A1B1C1,异面直线AB1和C1B互相垂直.
(1)求证: AB1⊥C1D1;
(2)求证: AB1⊥面A1CD;
(3)若AB1=3,求直线AC与平面A1CD所成的角.
已知函数
(1)当时,求函数
的单调区间和极值;
(2)若函数在[1,4]上是减函数,求实数
的取值范围.
已知函数在
上是增函数,
(1)求实数的取值集合
;
(2)当取值集合
中的最小值时,定义数列
;满足
且
,
,求数列
的通项公式;
(3)若,数列
的前
项和为
,求证:
.
解关于x的不等式ax2-(a+1)x+1<0.
在中,已知内角
,边
.设内角
,周长为
.
(1)求函数的解析式和定义域;(2)求
的最大值.
了解某市今年初二年级男生的身体素质状况,从该市初二年级男生中抽取了一部分学生进行“掷实心球”的项目测试.成绩低于6米为不合格,成绩在6至8米(含6米不含8米)的为及格,成绩在8米至12米(含8米和12米,假定该市初二学生掷实心球均不超过12米)为优秀.把获得的所有数据,分成五组,画出的频率分布直方图如图所示.已知有4名学生的成绩在10米到12米之间.
(Ⅰ)求实数的值及参加“掷实心球”项目测试的人数;
(Ⅱ)根据此次测试成绩的结果,试估计从该市初二年级男生中任意选取一人,“掷实心球”成绩为优秀
的概率;
(Ⅲ)若从此次测试成绩最好和最差的两组男生中随机抽取2名学生再进行其它项目的测试,求所抽取的2名学生来自不同组的概率.