对定义在上,并且同时满足以下两个条件的函数
称为
函数。
① 对任意的,总有
;
② 当时,总有
成立。
已知函数与
是定义在
上的函数。
(1)试问函数是否为
函数?并说明理由;
(2)若函数是
函数,求实数
组成的集合;
(3)在(2)的条件下,讨论方程解的个数情况。
(本小题满分12分)
某游乐园为迎接建国60周年,特在今年年初用98万元购进一批新的游乐器材供游客游玩。预计第一年包括维修费在内需各种费用12万元,从第二年开始每年所需费用均比前一年增加4万元,这些玩具每年总收入预计为50万元,若干年后,若有两种处理方案:①当盈利总额达到最大时,以8万元的价格全部卖出;②当年平均盈利达到最大值时,以26万元的价格全部卖出.
(Ⅰ)分别写出经过年后方案①中盈利总额
和方案②中年平均盈利y2关于x的函数关系式
(Ⅱ)问哪一种方案较为划算?请说明理由 ?
(本小题满分12分)
某中学举办安全法规知识竞赛,从参赛的高一、高二学生中各抽出100人的成绩作为样本。对高一年级的100名学生的成绩进行统计,并按[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]分组,得到成绩分布的频率分布直方图(如图)。
(Ⅰ)若规定60分以上(包括60分)为合格,计算高一年级这次知识
赛的合格率;
(Ⅱ)若高二年级这次知识竞赛的合格率为60%,由以上统计数据填写下 面2×2列联表,并问是否有99%的把握认为“这次知识竞赛的成绩与年级有关系”。
高一 |
高二 |
合计 |
|
合格人数 |
|||
不合格人数 |
|||
合计 |
参考数据与公式:
由列联表中数据计算
临界值表
P(K≥k0) |
0.10 |
0.05 |
0.010 |
k0 |
2.706 |
3.841 |
6.635 |
(本小题满分12分)已知f (x)=·
-1,其中向量
=(
sin2x,cosx),
=(1,2cosx)(x∈R)
(Ⅰ)求f (x)的单调递减区间;
(Ⅱ)在△ABC中,角A、B、C的对边分别为a、b、c,f (A)=2,a=,b=
,
求边长c的值。
(本小题满分16分)过原点O作圆x2+y2-8x=0的弦OA。
求弦OA中点M的轨迹方程;
(2)如点是(1)中的轨迹上的动点,
①求的最大、最小值;
②求的最大、最小值。
(本小题满分14分)求圆心在直线上,且过两圆
,
交点的圆的方程。