游客
题文

对定义在上,并且同时满足以下两个条件的函数称为函数。
① 对任意的,总有
② 当时,总有成立。
已知函数是定义在上的函数。
(1)试问函数是否为函数?并说明理由;
(2)若函数函数,求实数组成的集合;
(3)在(2)的条件下,讨论方程解的个数情况。

科目 数学   题型 解答题   难度 中等
知识点: 函数的基本性质
登录免费查看答案和解析
相关试题

(本小题满分12分)已知函数的最小正周期为
(1)求的单调递增区间;
(2)在中,角的对边长分别是满足,求函数的取值范围.

若一个数列各项取倒数后按原来的顺序构成等差数列,则称这个数列为调和数列.已知数列是调和数列,对于各项都是正数的数列,满足
(Ⅰ)证明数列是等比数列;

(Ⅱ)把数列中所有项按如图所示的规律排成一个三角形
数表,当时,求第行各数的和;
(Ⅲ)对于(Ⅱ)中的数列,证明:

(本小题满分13分)
已知中心在原点,焦点在轴上的椭圆的离心率为,且经过点,过点的直线与椭圆在第一象限相切于点
(Ⅰ)求椭圆的方程;
(Ⅱ)求直线的方程以及点的坐标;
(Ⅲ)是否存在过点的直线与椭圆相交于不同的两点,满足?若存在,求直线的方程;若不存在,请说明理由.

(本小题满分13分)
已知函数
(Ⅰ)求函数的导函数
(Ⅱ)当时,若函数上的增函数,求的最小值;
(Ⅲ)当时,函数上存在单调递增区间,求的取值范围.

(本小题满分14分)
如图,在三棱柱中,每个侧面均为正方形,为底边的中点,为侧棱的中点.
(Ⅰ)求证:∥平面
(Ⅱ)求证:平面
(Ⅲ)求直线与平面所成角的正弦值.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号