(本小题满分12分)
某游乐园为迎接建国60周年,特在今年年初用98万元购进一批新的游乐器材供游客游玩。预计第一年包括维修费在内需各种费用12万元,从第二年开始每年所需费用均比前一年增加4万元,这些玩具每年总收入预计为50万元,若干年后,若有两种处理方案:①当盈利总额达到最大时,以8万元的价格全部卖出;②当年平均盈利达到最大值时,以26万元的价格全部卖出.
(Ⅰ)分别写出经过年后方案①中盈利总额
和方案②中年平均盈利y2关于x的函数关系式
(Ⅱ)问哪一种方案较为划算?请说明理由 ?
设椭圆的左、右顶点分别为
,离心率
.过该椭圆上任一点
作
轴,垂足为
,点
在
的延长线上,且
.
(1)求椭圆的方程;
(2)求动点的轨迹
的方程;
(3)设直线(
点不同于
)与直线
交于点
,
为线段
的中点,试判断直线
与曲线
的位置关系,并证明你的结论.
如下图,互相垂直的两条公路、
旁有一矩形花园
,现欲将其扩建成一个更
大的三角形花园,要求点
在射线
上,点
在射线
上,且直线
过点
,其中
米,
米.记三角形花园
的面积为
.
(1)问:取何值时,
取得最小值,并求出最小值;
(2)若不超过1764平方米,求
长的取值范围.
在四棱锥中,
底面
,
,
,
,
,
是
的中点.
(1)证明:;
(2)证明:平面
;
(3)(限理科生做,文科生不做)求二面角的余弦值.
已知命题,命题
,若
是
的充分不必要条件,求实数
的取值范围.
已知函数,
.
(1)求的值;
(2)设求
的值.