求以相交两圆:
及
:
的公共弦为直径的圆的方程.
选修:几何证明选讲
如图,点是⊙
直径
的延长线上一点,
是⊙
的切线,
为切点,
的平分线
与
相交于点
与
相交于点
(1)求的值;
(2)若求
的值.
已知函数有且只有一个零点,其中
.
(1)求的值;
(2)若对任意的,有
成立,求实数k的最大值;
(3)设,对任意
,证明:不等式
恒成立.
已知直线,圆
,椭圆
的离心率
,直线
被圆
截得的弦长与椭圆的短轴长相等.
求椭圆
的方程;
已知动直线
(斜率存在)与椭圆
交于
两个不同点,且△
的面积为
,若
为线段
的中点,问:在
轴上是否存在两个定点
使得直线
与
的斜率之积为定值?若存在,求出
的坐标,若不存在,说明理由.
已知数列满足
,
,数列
满足:
,
,数列
的前
项和为
.
(1)求证:数列为等比数列;
(2)求证:数列为递增数列;
(3)若当且仅当时,
取得最小值,求
的取值范围.
在三棱柱中,侧面
为矩形,
,
,
是
的中点,
与
交于点
,且
平面
.
(1)证明:;
(2)若,求直线
与平面
所成角的正弦值.