在椭圆上,求使
取得最大值和最小值的点
的坐标.
(本小题满分14分)
如图, 在直三棱柱ABC-A1B1C1中,AC=3,BC=4,,AA1=4,点D是AB的中点.
(1)求证:AC⊥BC1;
(2)求的体积;
(3)求二面角的平面角的余弦值.
已知△ABC的内角A、B、C所对的边分别为且
,
.
(1) 若,求
的值;
(2) 若△ABC的面积,求
的值.
已知函数满足
,对于任意
R都有
,且
,令
.
(1)求函数的表达式;
(2)求函数的单调区间;
(3)研究函数在区间
上的零点个数.
已知圆的方程为:
,直线
的方程为
,点
在直线
上,过点
作圆
的切线
,切点为
。
(1)若,求点
的坐标。
(2)若点的坐标为
,过点
的直线与圆
交于
两点,当
时,求直线
的方程。
(3)求证:经过三点的圆必经过定点,并求出所有定点的坐标。
.如图,在平面直角坐标系中,
,
,
,
,设
的外接圆圆心为E.
(1)若⊙E与直线CD相切,求实数a的值;
(2)设点
在圆
上,使
的面积等于12的点
有且只有三个,试问这样的⊙E是否存在,若存在,求出⊙E的标准方程;若不存在,说明理由.